skip to main content


Search for: All records

Creators/Authors contains: "Martínez-Delgado, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the discovery of an ultrafaint dwarf in the constellation of Pegasus. Pegasus V (Peg V)/Andromeda XXXIV was initially identified in the public imaging data release of the DESI Legacy Imaging Surveys and confirmed with deep imaging from Gemini/GMOS-N. The colour–magnitude diagram shows a sparse red giant branch (RGB) population and a strong overdensity of blue horizontal branch stars. We measure a distance to Peg V of $D=692^{+33}_{-31}$ kpc, making it a distant satellite of Andromeda with MV = −6.3 ± 0.2 and a half-light radius of rhalf = 89 ± 41 pc. It is located ∼260 kpc from Andromeda in the outskirts of its halo. The RGB is well fitted by a metal-poor isochrone with [Fe/H] = −3.2, suggesting it is very metal poor. This, combined with its blue horizontal branch, could imply that it is a reionization fossil. This is the first detection of an ultrafaint dwarf outside the deep Pan-Andromeda Archaeological Survey area, and points to a rich, faint satellite population in the outskirts of our nearest neighbour.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We present a map of the total intrinsic reddening across ≃34 deg2 of the Small Magellanic Cloud (SMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created using a subsample of 29 274 galaxies with low levels of intrinsic reddening based on the lephare χ2 minimization SED-fitting routine. We find statistically significant enhanced levels of reddening associated with the main body of the SMC compared with regions in the outskirts [ΔE(B − V) ≃ 0.3 mag]. A comparison with literature reddening maps of the SMC shows that, after correcting for differences in the volume of the SMC sampled, there is good agreement between our results and maps created using young stars. In contrast, we find significant discrepancies between our results and maps created using old stars or based on longer wavelength far-IR dust emission that could stem from biased samples in the former and uncertainties in the far-IR emissivity and the optical properties of the dust grains in the latter. This study represents one of the first large-scale categorizations of extragalactic sources behind the SMC and as such we provide the lephare outputs for our full sample of ∼500 000 sources. 
    more » « less
  3. null (Ed.)
    ABSTRACT The periphery of the Small Magellanic Cloud (SMC) can unlock important information regarding galaxy formation and evolution in interacting systems. Here, we present a detailed study of the extended stellar structure of the SMC using deep colour–magnitude diagrams, obtained as part of the Survey of the MAgellanic Stellar History (SMASH). Special care was taken in the decontamination of our data from Milky Way (MW) foreground stars, including from foreground globular clusters NGC 362 and 47 Tuc. We derived the SMC surface brightness using a ‘conservative’ approach from which we calculated the general parameters of the SMC, finding a staggered surface brightness profile. We also traced the fainter outskirts by constructing a stellar density profile. This approach, based on stellar counts of the oldest main-sequence turn-off stars, uncovered a tidally disrupted stellar feature that reaches as far out as 12 deg from the SMC centre. We also serendipitously found a faint feature of unknown origin located at ∼14 deg from the centre of the SMC and that we tentatively associated with a more distant structure. We compared our results to in-house simulations of a 1 × 109 M⊙ SMC, finding that its elliptical shape can be explained by its tidal disruption under the combined presence of the MW and the Large Magellanic Cloud. Finally, we found that the older stellar populations show a smooth profile while the younger component presents a jump in the density followed by a flat profile, confirming the heavily disturbed nature of the SMC. 
    more » « less